3.3.31 \(\int \frac {(a+b \sinh ^{-1}(c x))^2}{x^2 (d+c^2 d x^2)} \, dx\) [231]

Optimal. Leaf size=204 \[ -\frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d x}-\frac {2 c \left (a+b \sinh ^{-1}(c x)\right )^2 \text {ArcTan}\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 b^2 c \text {PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text {PolyLog}\left (2,-i e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text {PolyLog}\left (2,i e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 b^2 c \text {PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 i b^2 c \text {PolyLog}\left (3,-i e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 i b^2 c \text {PolyLog}\left (3,i e^{\sinh ^{-1}(c x)}\right )}{d} \]

[Out]

-(a+b*arcsinh(c*x))^2/d/x-2*c*(a+b*arcsinh(c*x))^2*arctan(c*x+(c^2*x^2+1)^(1/2))/d-4*b*c*(a+b*arcsinh(c*x))*ar
ctanh(c*x+(c^2*x^2+1)^(1/2))/d-2*b^2*c*polylog(2,-c*x-(c^2*x^2+1)^(1/2))/d+2*I*b*c*(a+b*arcsinh(c*x))*polylog(
2,-I*(c*x+(c^2*x^2+1)^(1/2)))/d-2*I*b*c*(a+b*arcsinh(c*x))*polylog(2,I*(c*x+(c^2*x^2+1)^(1/2)))/d+2*b^2*c*poly
log(2,c*x+(c^2*x^2+1)^(1/2))/d-2*I*b^2*c*polylog(3,-I*(c*x+(c^2*x^2+1)^(1/2)))/d+2*I*b^2*c*polylog(3,I*(c*x+(c
^2*x^2+1)^(1/2)))/d

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 10, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {5809, 5789, 4265, 2611, 2320, 6724, 5816, 4267, 2317, 2438} \begin {gather*} -\frac {2 c \text {ArcTan}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{d}+\frac {2 i b c \text {Li}_2\left (-i e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d}-\frac {2 i b c \text {Li}_2\left (i e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d}-\frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d x}-\frac {4 b c \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d}-\frac {2 b^2 c \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 b^2 c \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 i b^2 c \text {Li}_3\left (-i e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 i b^2 c \text {Li}_3\left (i e^{\sinh ^{-1}(c x)}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])^2/(x^2*(d + c^2*d*x^2)),x]

[Out]

-((a + b*ArcSinh[c*x])^2/(d*x)) - (2*c*(a + b*ArcSinh[c*x])^2*ArcTan[E^ArcSinh[c*x]])/d - (4*b*c*(a + b*ArcSin
h[c*x])*ArcTanh[E^ArcSinh[c*x]])/d - (2*b^2*c*PolyLog[2, -E^ArcSinh[c*x]])/d + ((2*I)*b*c*(a + b*ArcSinh[c*x])
*PolyLog[2, (-I)*E^ArcSinh[c*x]])/d - ((2*I)*b*c*(a + b*ArcSinh[c*x])*PolyLog[2, I*E^ArcSinh[c*x]])/d + (2*b^2
*c*PolyLog[2, E^ArcSinh[c*x]])/d - ((2*I)*b^2*c*PolyLog[3, (-I)*E^ArcSinh[c*x]])/d + ((2*I)*b^2*c*PolyLog[3, I
*E^ArcSinh[c*x]])/d

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 4265

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c +
 d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)/E^(I*k*Pi)]/(f*fz*I)), x] + (-Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*
Log[1 - E^((-I)*e + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 4267

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(Ar
cTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] + (-Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*
fz*x)], x], x] + Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5789

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/(c*d), Subst[Int[(a +
 b*x)^n*Sech[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0]

Rule 5809

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(d*f*(m + 1))), x] + (-Dist[c^2*((m + 2*p + 3)/(f^2*
(m + 1))), Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Dist[b*c*(n/(f*(m + 1)))*Simp[(d +
 e*x^2)^p/(1 + c^2*x^2)^p], Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /;
 FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && ILtQ[m, -1]

Rule 5816

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[(1/c^(m
 + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]], Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; F
reeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{x^2 \left (d+c^2 d x^2\right )} \, dx &=-\frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d x}-c^2 \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d+c^2 d x^2} \, dx+\frac {(2 b c) \int \frac {a+b \sinh ^{-1}(c x)}{x \sqrt {1+c^2 x^2}} \, dx}{d}\\ &=-\frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d x}-\frac {c \text {Subst}\left (\int (a+b x)^2 \text {sech}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{d}+\frac {(2 b c) \text {Subst}\left (\int (a+b x) \text {csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{d}\\ &=-\frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d x}-\frac {2 c \left (a+b \sinh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {(2 i b c) \text {Subst}\left (\int (a+b x) \log \left (1-i e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d}-\frac {(2 i b c) \text {Subst}\left (\int (a+b x) \log \left (1+i e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d}-\frac {\left (2 b^2 c\right ) \text {Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d}+\frac {\left (2 b^2 c\right ) \text {Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d}\\ &=-\frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d x}-\frac {2 c \left (a+b \sinh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-i e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (i e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {\left (2 i b^2 c\right ) \text {Subst}\left (\int \text {Li}_2\left (-i e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d}+\frac {\left (2 i b^2 c\right ) \text {Subst}\left (\int \text {Li}_2\left (i e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d}-\frac {\left (2 b^2 c\right ) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {\left (2 b^2 c\right ) \text {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d}\\ &=-\frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d x}-\frac {2 c \left (a+b \sinh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 b^2 c \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-i e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (i e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 b^2 c \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {\left (2 i b^2 c\right ) \text {Subst}\left (\int \frac {\text {Li}_2(-i x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {\left (2 i b^2 c\right ) \text {Subst}\left (\int \frac {\text {Li}_2(i x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d}\\ &=-\frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{d x}-\frac {2 c \left (a+b \sinh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 b^2 c \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-i e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (i e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 b^2 c \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{d}-\frac {2 i b^2 c \text {Li}_3\left (-i e^{\sinh ^{-1}(c x)}\right )}{d}+\frac {2 i b^2 c \text {Li}_3\left (i e^{\sinh ^{-1}(c x)}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.74, size = 363, normalized size = 1.78 \begin {gather*} -\frac {\frac {a^2}{x}+\frac {2 a b \sinh ^{-1}(c x)}{x}+a^2 c \text {ArcTan}(c x)+2 a b c \tanh ^{-1}\left (\sqrt {1+c^2 x^2}\right )+\frac {1}{2} i a b c \left (\sinh ^{-1}(c x) \left (\sinh ^{-1}(c x)-4 \log \left (1+i e^{\sinh ^{-1}(c x)}\right )\right )-4 \text {PolyLog}\left (2,-i e^{\sinh ^{-1}(c x)}\right )\right )-\frac {1}{2} i a b c \left (\sinh ^{-1}(c x) \left (\sinh ^{-1}(c x)-4 \log \left (1-i e^{\sinh ^{-1}(c x)}\right )\right )-4 \text {PolyLog}\left (2,i e^{\sinh ^{-1}(c x)}\right )\right )-b^2 c \left (-\frac {\sinh ^{-1}(c x)^2}{c x}+2 \sinh ^{-1}(c x) \log \left (1-e^{-\sinh ^{-1}(c x)}\right )+i \sinh ^{-1}(c x)^2 \log \left (1-i e^{-\sinh ^{-1}(c x)}\right )-i \sinh ^{-1}(c x)^2 \log \left (1+i e^{-\sinh ^{-1}(c x)}\right )-2 \sinh ^{-1}(c x) \log \left (1+e^{-\sinh ^{-1}(c x)}\right )+2 \text {PolyLog}\left (2,-e^{-\sinh ^{-1}(c x)}\right )+2 i \sinh ^{-1}(c x) \text {PolyLog}\left (2,-i e^{-\sinh ^{-1}(c x)}\right )-2 i \sinh ^{-1}(c x) \text {PolyLog}\left (2,i e^{-\sinh ^{-1}(c x)}\right )-2 \text {PolyLog}\left (2,e^{-\sinh ^{-1}(c x)}\right )+2 i \text {PolyLog}\left (3,-i e^{-\sinh ^{-1}(c x)}\right )-2 i \text {PolyLog}\left (3,i e^{-\sinh ^{-1}(c x)}\right )\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSinh[c*x])^2/(x^2*(d + c^2*d*x^2)),x]

[Out]

-((a^2/x + (2*a*b*ArcSinh[c*x])/x + a^2*c*ArcTan[c*x] + 2*a*b*c*ArcTanh[Sqrt[1 + c^2*x^2]] + (I/2)*a*b*c*(ArcS
inh[c*x]*(ArcSinh[c*x] - 4*Log[1 + I*E^ArcSinh[c*x]]) - 4*PolyLog[2, (-I)*E^ArcSinh[c*x]]) - (I/2)*a*b*c*(ArcS
inh[c*x]*(ArcSinh[c*x] - 4*Log[1 - I*E^ArcSinh[c*x]]) - 4*PolyLog[2, I*E^ArcSinh[c*x]]) - b^2*c*(-(ArcSinh[c*x
]^2/(c*x)) + 2*ArcSinh[c*x]*Log[1 - E^(-ArcSinh[c*x])] + I*ArcSinh[c*x]^2*Log[1 - I/E^ArcSinh[c*x]] - I*ArcSin
h[c*x]^2*Log[1 + I/E^ArcSinh[c*x]] - 2*ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + 2*PolyLog[2, -E^(-ArcSinh[c*x
])] + (2*I)*ArcSinh[c*x]*PolyLog[2, (-I)/E^ArcSinh[c*x]] - (2*I)*ArcSinh[c*x]*PolyLog[2, I/E^ArcSinh[c*x]] - 2
*PolyLog[2, E^(-ArcSinh[c*x])] + (2*I)*PolyLog[3, (-I)/E^ArcSinh[c*x]] - (2*I)*PolyLog[3, I/E^ArcSinh[c*x]]))/
d)

________________________________________________________________________________________

Maple [F]
time = 0.10, size = 0, normalized size = 0.00 \[\int \frac {\left (a +b \arcsinh \left (c x \right )\right )^{2}}{x^{2} \left (c^{2} d \,x^{2}+d \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d),x)

[Out]

int((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d),x, algorithm="maxima")

[Out]

-a^2*(c*arctan(c*x)/d + 1/(d*x)) + integrate(b^2*log(c*x + sqrt(c^2*x^2 + 1))^2/(c^2*d*x^4 + d*x^2) + 2*a*b*lo
g(c*x + sqrt(c^2*x^2 + 1))/(c^2*d*x^4 + d*x^2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d),x, algorithm="fricas")

[Out]

integral((b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2)/(c^2*d*x^4 + d*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {a^{2}}{c^{2} x^{4} + x^{2}}\, dx + \int \frac {b^{2} \operatorname {asinh}^{2}{\left (c x \right )}}{c^{2} x^{4} + x^{2}}\, dx + \int \frac {2 a b \operatorname {asinh}{\left (c x \right )}}{c^{2} x^{4} + x^{2}}\, dx}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))**2/x**2/(c**2*d*x**2+d),x)

[Out]

(Integral(a**2/(c**2*x**4 + x**2), x) + Integral(b**2*asinh(c*x)**2/(c**2*x**4 + x**2), x) + Integral(2*a*b*as
inh(c*x)/(c**2*x**4 + x**2), x))/d

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)^2/((c^2*d*x^2 + d)*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2}{x^2\,\left (d\,c^2\,x^2+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c*x))^2/(x^2*(d + c^2*d*x^2)),x)

[Out]

int((a + b*asinh(c*x))^2/(x^2*(d + c^2*d*x^2)), x)

________________________________________________________________________________________